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Solución

Pregunta 1. (6 ptos.) Considere la familia de curvas

F =

{{
(x, y) ∈ R2 : 2 y2 ln(y)− y2 + 2 x2 = λ

}
: λ ∈ (−1,∞)

}
i. Halle la ecuación diferencial que describe a la familia F ;

ii. Determine las trayectorias ortogonales de la famila F .

Solución: Derivando ı́mplicitamente la ecuación de una curva

cualquiera perteneciente a la familia F , se tiene

2

(
2 y

dy

dx
ln(y) + y2

1

y

dy

dx

)
− 2 y

dy

dx
+ 4 x = 0

de donde se desprende que la ecuación diferencial que describe a las

curvas pertenecientes a la familia F es

dy

dx
= − x

y ln(y)

Luego, las trayectorias ortogonales de la familia F vienen dadas por

las soluciones de la ecuación diferencial

dy

dx
=

y ln(y)

x

la cual resolvemos mediante separación de variables como sigue.

dy

dx
=

y ln(y)

x
⇐⇒

∫
dy

y ln(y)
=

∫
dx

x

⇐⇒ ln
∣∣ln(y)∣∣ = ln|x|+ κ

⇐⇒ ln(y) = eln|x|+κ = eκ eln|x| = eκ |x| = c x

⇐⇒ y = ec x



Aśı, la familia de trayectorias ortogonales a F es{{
(x, y) ∈ R2 : y = ec x

}
: c ∈ R

}

Pregunta 2. (9 ptos.) Resuelva el problema de valor inicial

6 y2 dx− x
(
2x3 + y

)
dy = 0 con y(−1) = 3

Solución: Como la ecuación diferencial

dy

dx
=

6 y2

x
(
2x3 + y

)
no es ni de variables separables, ni lineal, ni homogénea, considere-

mos
dx

dy
=

x
(
2x3 + y

)
6 y2

=
1

3 y2
x4 +

1

6 y
x

la cual identificamos como una ecuación de Bernoulli. Notemos que

y ≡ 0 es solución de la ecuación original. Dado que las funciones

f(x, y) =
x
(
2x3 + y

)
6 y2

y
∂f

∂x
(x, y) =

x3

y2
+

1

6 y

son continuas en el semiplano superior,
{
(x, y) ∈ R2 : y > 0

}
, y

el punto (−1, 3) pertenece al semiplano superior, el Teorema de

Existencia y Unicidad establece que existe un intervalo I ⊂ (0,∞)

centrado en 3 y una única función x = φ(y) derivable en I que

satisface el problema de valor inicial dx
dy

= f(x, y) con x(3) = −1,

para todo y ∈ I. Aśı,

dx

dy
=

1

3 y2
x4 +

1

6 y
x ⇐⇒ dx

dy
− 1

6 y
x =

1

3 y2
x4

x ̸≡ 0
↓

⇐⇒ x−4 dx

dy
− 1

6 y
x−3 =

1

3 y2

⇐⇒ −3 x−4 dx

dy
+

1

2 y
x−3 = − 1

y2



w = x−3 ⇒ dw
dy

= −3x−4 dx
dy

↓
⇐⇒ dw

dy
+

1

2 y
w = − 1

y2

y esta última ecuación se puede resolver mediante factor integrante.

Notemos que x ≡ 0 es solución de la ecuación original. Luego,

µ(y) = e
∫ dy

2y = e
1
2
ln|y|

y ∈ I ⊂ (0,∞)
↓
= e

1
2
ln(y) = eln

(√
y
)
=

√
y

por lo que la solución viene dada por

w(y) =
1
√
y

(∫
√
y

(
− 1

y2

)
dy + c

)

=
1
√
y

(
−
∫

y
−3
/
2 dy + c

)

=
1
√
y

(
− 1

−1/2
y
−1
/
2 + c

)
=

2

y
+

c
√
y

Reemplazando w = x−3 tenemos que la solución es

x =
1

3
√
w

=
1

3

√
2

y
+

c
√
y

=
1

3

√
2 + c

√
y

y

= 3

√
y

2 + c
√
y

donde el valor de c viene determinado por la condición incicial

c =
y − 2 x3

x3
√
y

∣∣∣∣
(x,y)=(−1,3)

=
3− 2 (−1)3

(−1)3
√
3

=
−5√
3

Por lo tanto, la solución al problema de valor indicial es

x =
3

√√√√ y

2− 5√
3

√
y

, para y >
2
√
3

5

la cual podemos dar impĺıcitamente con la ecuación

5√
3
x3√y = 2x3 − y , con x < 0



Pregunta 3. (8 ptos.) Halle la solución general de la ecuación

diferencial

x
dy

dx
=
√

x2 − y2 + y

Solución:

x
dy

dx
=
√
x2 − y2 + y

y = z x ⇒ dy

dx
=

dz

dx
x+ z

↓
⇐⇒ x

(
dz

dx
x+ z

)
=

√
x2 − (xz)2 + zx

⇐⇒ dz

dx
=

|x|
√
1− z2

x2
=

√
1− z2

|x|

⇐⇒
∫

dz√
1− z2

=

∫
dx

|x|

⇐⇒ arcsen(z) =
x

|x|

(
ln|x|+ c

)
⇐⇒ y

x
= z = sen

(
x

|x|

(
ln|x|+ c

))
=
↑

seno es impar: sen(± θ)=± sen(θ)

x

|x|
sen
(
ln|x|+ c

)

⇐⇒ y =
x2

|x|
sen
(
ln|x|+ c

)
= |x| sen

(
ln|x|+ c

)
Aśı, la solución general de la ecuación diferencial viene dada por

y = |x| sen
(
ln|x|+ c

)
con c tomando valores en R.

Pregunta 4. (6 ptos.) Trace las curvas integrales de la ecuación

diferencial
dy

dx
=

−x+ y + 1

x+ y − 3



Solución: Dado que las rectas −x+ y + 1 = 0 y x+ y − 3 = 0

se intersectan en el punto (2, 1), pues{
−x+ y + 1 = 0

x+ y − 3 = 0
=⇒

(
x
y

)
=

1

−2

(
1 −1

−1 −1

)(
−1
3

)
podemos reescribir la ecuación como

dy

dx
=

−(x− 2) + (y − 1)

(x− 2) + (y − 1)

la cual es homogénea en las variables u = (x − 2) y v = (y − 1)

ya que

−(x− 2) + (y − 1)

(x− 2) + (y − 1)
=

−λ (x− 2) + λ (y − 1)

λ (x− 2) + λ (y − 1)

para todo λ ̸= 0. Como consecuencia,
dy

dx
es constante sobre cada

recta que pasa por el punto (2, 1) excluyendo ese punto. Como

k =
−(x− 2) + (y − 1)

(x− 2) + (y − 1)
⇐⇒ y − 1 =

1 + k

1− k
(x− 2)

escribiendo
dy

dx
= k se tiene que las isoclinas son rectas que pasan

por el punto (2, 1), sin incluirlo, de pendiente
1 + k

1− k
, con k ∈ R\{1}.

Más aún, si representamos las isoclinas como y − 1 = m (x − 2)

entonces k =
m− 1

m+ 1
, con m ∈ R \ {−1}.

En la ilustración que está

a la derecha, hemos usado

las isoclinas para marcar el

campo de direcciones aso-

ciado a la ecuación diferen-

cial dada y aśı poder trazar

sus curvas integrales.



Pregunta 5. (6 ptos.) Considere el problema de valor inicial

dy

dx
= (x+ y − 1) ex con y(1) = 1

Halle las primeras tres funciones, φ0(x), φ1(x) y φ2(x), que se ob-

tienen en el método de aproximaciones sucesivas de Picard.

Solución: Las funciones
{
φn

}
en el método de aproximaciones

de Picard vienen dadas por

φn+1(x) = y0 +

∫ x

x0

f
(
t, φn(t)

)
dt , con φ0 ≡ y0

donde f(x, y) proviene de la ecuación diferencial
dy

dx
= f(x, y) y

los valores (x0, y0) de la condición inicial y(x0) = y0. Considerando

f(x, y) = (x+ y − 1) ex se tiene que

f
(
t, φn(t)

)
=
(
t+ φn(t)− 1

)
et

Aśı, para la condición inicial (x0, y0) = (1, 1) calculamos:

φ0(x) = 1

φ1(x) = 1 +

∫ x

1

(
t+ φ0(t)− 1

)
et dt

= 1 +

∫ x

1

t et dt

= 1 + (x− 1) ex

φ2(x) = 1 +

∫ x

1

(
t+ φ1(t)− 1

)
et dt

= 1 +

∫ x

1

(
t+ (t− 1) et

)
et dt

= 1 +

∫ x

1

t et dt+
e2

4

∫ x

1

2 (t− 1) e2(t−1) 2 dt

= 1 +

∫ x

1

t et dt+
e2

4

∫ 2(x−1)

0

u eu du

= 1 + (x− 1) ex +
e2

4

(
1 + (2x− 3) e2(x−1)

)
recordando que

∫ b

a
t et dt = t et

∣∣b
a
−
∫ b

a
et dt = (t− 1) et

∣∣b
a


